Modern fysiks bi a branch of fysiks wey develop for di early 20th century and onwod or branches wey early 20th century fysiks graitli influens. Notabul branches of modern fysiks inklud quantum mekaniks, speshial relativity and jeneral relativity.

Klassikal fysiks usually dé konsaynd with evriday kondishions: speeds dé much lowa than di speed of lait, saizis de much graita than dat of atoms, yet veri smol for astronomikal terms. Modern fysiks, haweva, dé konsaynd with hai velocitis, smol distansis, and veri larj enerjis.

Klassikal fysiks typikally dé konsaynd with evriday kondishions: speeds dé much lowa than di speed of lait, saizis dé much graita than dat of atoms, and enerjis relativly dé smol. Modern fysiks, haweva, dé konsaynd with moh extrim kondishions, such as hai velocitis wey dé komparabul to di speed of lait (speshial relativity), smol distansis komparabul to di atomik raidius (quantum mekaniks), and veri hai enerjis (relativity). In jeneral, quantum and relativistik effekts dé belivd to exist across all skayls, although these effekts fit dé veri smol at human skayl. While quantum mekaniks dé kompatibul with speshial relativity (See: Relativistik quantum mekaniks), wan of di unsolvd problems for fysiks bi di unifikayshion of quantum mekaniks and jeneral relativity, wey di Standad Model of partikul fysiks korrently no fit akaunt for.

Modern fysiks bi an effort to undastand di undalaiyin processis of di intarakshions of mata yuzin di tulz of saiens & enjiniarin. For a literal sens, di tem modern fysiks means up-to-dayt fysiks. For dis sens, a signifikant porshion of so-kol klassikal fysiks dé modern.[1] Haweva, since rofly 1890, niu discoveris don kaus signifikant paradaim shifts:[1] espeshially di advent of quantum mekaniks (QM) and relativity (ER). Fysiks wey inkorporayt elements of eida QM or ER (or both) bi modern fysiks. Na for dis leita sens di tem jenerally dé yuzd.[1]

Modern fysiks often dé enkauntad wen dealin with extrim kondishions. Quantum mekanikal effekts tend to apia wen dealing with "lows" (low temperashor, smol distansis), while relativistik effekts tend to apia when dealing with "hais" (hai velocitis, larj distansis), di "midduls" bi klassikal behavior. For exampul, wen analyzin behavior of a gas wey dé room temperashor, most fenomena ga involv di (klassikal) Maxwell–Boltzmann distribushion. Haweva, nia absolut zero, di Maxwell–Boltzmann distribushion fail to akaunt for di obsavd behavior of di gas, and di (modern) Femi–Dirak or Bose–Einstein distribushions get to dé yuzd instead.

Albert Einstein (1879–1955), faunda of di theori of relativity, and Max Plankk (1858–1947), faunda of quantum theori


Veri often, e dé possibul to faind – or "retriv" – di klassikal behavior from di modern deskripshion bai analyzin di modern deskripshion at low speeds and larj distansis (by tekin a limit, or by mekin an approximayshion). Wen doin so, di result bi di klassikal limit.

Klassikal fysiks (Raylei–Jeans law, blak line) fail to explain blak-bodi radiashion – di so-kol ultravaiolet katastrofi. Di quantum deskripshion (Plankk's law, kolawd lines) bi modern fysiks.

Also see

chenj-am

Referens

chenj-am
  1. 1.0 1.1 1.2 Cite book |author1= F. K. Richtmyer |author1-link= Floyd K. Richtmyer |author2=E. H. Kennard |author3= T. Lauristen |year=1955 |title=Introdukshion to Modern Fysiks |page=1 |edition=5th |publisher=McGraw-Hill |location=Niu Yok |lccn= 55006862}}